NONLINEAR OPTICS (PHYC/ECE 568)

Spring 2022 - Instructor: M. Sheik-Bahae University of New Mexico Homework #5, Due Monday, March 29

1. $\chi^{(3)}(\omega;\omega,\omega,-\omega)$ in Na vapor

With reference to the spectrum of $|\chi^{(3)}(3\omega;\omega,\omega,\omega)|$ in atomic sodium given in Boyd, page 150 (3rd ed.), sketch (neatly and clearly) what would you think might be the spectrum of $|n_2| \propto |\chi^{(3)}(\omega;\omega,\omega,-\omega)|$. Explain the primary differences between the two. (You may be only qualitative regarding the magnitude of the nonlinearity)

3. NLO susceptibilities: resonances and selection rules

A fictional molecule has the following energy levels. Draw the spectrum (for $0 < \hbar \omega < 8 \text{ eV}$) for the (**a**) linear absorption coefficient α , (**b**) two-photon absorption (TPA) coefficient β , (**c**) SHG: $|\chi^{(2)}(2\omega;\omega,\omega)|$ and (**d**) THG: $|\chi^{(3)}(3\omega;\omega,\omega,\omega)|$.

Be quantitative in your x-axis. Assume a finite broadening in your drawings. Point out the resonances (diagrammatically) on your graph for each case and show the relative strengths if obvious. Note: no calculations needed for this problem either.

